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Abstract 

This paper argues that an organization’s knowledge base and network position dynamically co-evolve. 

Specifically, we hypothesize that moving towards the core (periphery) of an R&D alliance network 

induces organizations to develop a generalist (specialized) knowledge base; at the same time, 

developing a generalist (specialized) knowledge base induces organizations to move towards the core 

(periphery) of the R&D network. To test this self-reinforcing causal cycle, we analyze a large panel 

data set describing all R&D collaboration alliances in the US between 1985 and 2003. The data 

strongly support our argument and hypotheses. In addition to illuminating the dynamic relationship 

linking organizations to their external environment, the paper unveils a deep-rooted theoretical link 

between network and knowledge-based views of the firm. 
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Introduction 

The complex relationship linking organizations to their external environment has been a chief topic of 

investigation among organizational scholars for over half a century (Volberda et al. 2012). While 

early works were primarily concerned with the role of environmental uncertainty (Lawrence and 

Lorsch 1967), later research considered a wide range of dimensions including environmental 

dynamism (Davis et al. 2009), turbulence (Siggelkow and Rivkin 2005), complexity (Van de Ven et 

al. 2012), consensus (Cattani et al. 2008), and density (Lomi et al. 2010). Complementing this line of 

inquiry, an important stream of research has investigated how organizations strategically position 

themselves where environmental conditions are most favorable (Song et al. 2002). 

Across these research streams, the external environment is usually assumed to exogenously affect 

the organization’s internal resource base (Baum and Singh 1994). This assumption is problematic, 

though, because "environments affect organizations through the process of making available or 

withholding resources” that for the most part are held by other organizations (Aldrich 1976, p. 61, 

Podolny and Page 1998). Contrary to macro environmental characteristics such as density or 

dynamism, inter-organizational networks do not exogenously affect organizations’ internal resource 

base (Stuart and Sorenson 2007). Insofar as organizations form and dissolve inter-organizational ties 

in an attempt to draw resources from the external environment (Ahuja 2000a), a more plausible and 

theoretically insightful hypothesis is that the resource base that develops within the boundaries of 

individual organizations systematically coevolves with the broader network that binds those 

organizations together (Ahuja et al. 2012, Koza and Lewin 1999).  

Even though it is recognized that explicating the dynamic interplay between an organization’s 

internal resource base and external network is important to better understand the organization-

environment link (Baum and Singh 1994, Gulati and Gargiulo 1999), research on the subject is still in 

its infancy. The present paper contributes to this research objective by examining whether and how an 

organization’s technological knowledge – a critical component of its resource base – coevolves with 

the organization’s R&D alliance network. While the arguments developed in the paper are solidly 

grounded in previous research, we depart from extant literature in two significant ways. First, prior 

studies predominantly posited a unidirectional causal relation whereby an organization’s R&D 
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network position affects its technological knowledge base (Schilling and Phelps 2007), or vice-versa 

(Rothaermel and Boeker 2008). By contrast, a theoretical contention of the present study is that such 

relation is inherently bidirectional. Second, most studies on R&D networks focused on a single 

technological sector (Powell et al. 1996). However, recent research shows that technological sectors 

develop in an ecologically interdependent fashion (Carnabuci, 2010) and that a large share of R&D 

alliances cut across sectorial boundaries (Schilling 2009). To understand how an organization’s 

knowledge base and external network coevolve, it is therefore critical to expand consideration to the 

entire network of R&D alliances connecting organizations throughout the technological landscape. 

Consistent with this view, the second distinguishing aspect of this study is that it focuses on a 

complete network of R&D alliances both within and across technological sectors.  

To examine the co-evolutionary dynamics linking organizations’ knowledge and network 

position, we focus on and integrate two well-established but thus far largely unrelated lines of inquiry. 

To characterize organizations’ knowledge base, we draw on the distinction between technological 

specialists – whose technological knowledge yields the greatest returns when applied to a narrow 

niche of application sectors, and technological generalists – whose technological knowledge yields 

the greatest returns when applied to a broad range of application sectors (Arora et al. 2001, 

Gambardella and McGahan 2010, Mitchell and Singh 1993, Owen-Smith et al. 2002). To characterize 

organizations’ external networks, we consider whether a firm occupies a core or a peripheral position 

within the R&D alliance network. The key contention of the paper is that moving towards the core 

(periphery) of the R&D network induces organizations to develop a generalist (specialized) 

knowledge base. At the same time, developing a generalist (specialized) knowledge base induces 

organizations to move towards the core (periphery) of the R&D network. The combined effect of 

these mechanisms implies a self-reinforcing dynamics whereby the internal knowledge base of an 

organization systematically coevolves with its position in the external R&D network. 

To support this co-evolutionary hypothesis, we proceed as follows.  We begin by developing the 

argument that an organization’s position in the structure of the R&D network, defined in terms of a 

continuum from core to periphery, influences whether the organization will develop a specialized or a 

generalist knowledge base. In particular, we articulate this hypothesis by arguing that an 
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organization’s network position shapes both its interests structure (which type of technological 

knowledge an organization prefers to develop) and its opportunity structure (which type of 

technological knowledge an organization is able to develop). Applying this same explanatory logic to 

the reverse causal relation, we then argue that the degree of specialization (generality) of a firm’s 

knowledge affects both its interests structure (which R&D collaboration ties an organization prefers to 

develop) and its opportunities structure (which R&D collaboration ties an organization is able to 

develop)
1
. We then move into describing the setting, data and econometric approaches used to test our 

arguments. We conclude by discussing how the results of the study change our understanding of the 

relation between organizations’ knowledge and networks and, more broadly, between organizations 

and environments.  

Core and periphery in R&D alliance networks 

Core-periphery structures have been found to be ubiquitous and “substantively important” in a variety 

of empirical settings (Mullins et al. 1977, White et al. 1976, p. 742, Zelnio 2011), and especially in 

the context of inter-organizational networks (Cattani and Ferriani 2008, Connelly et al. 2011, Mintz 

and Schwartz 1981).  Core-periphery structures are characterized by a cohesive clique of densely 

interconnected core actors surrounded by a fringe of weakly connected peripheral actors (Borgatti and 

Everett 1999, p. 375). Figure 1 presents an illustration. The densely tied hollow squares at the center 

of the network represent the core. Peripheral actors, represented by the dark circles at the outskirts of 

the network, are connected to the network through fewer and mostly indirect connections. Thus, 

reflecting the sociological intuition that core actors mutually reinforce each other’s structural position 

(Snyder and Kick 1979), an actor’s coreness is recursively defined by the coreness of the actors it is 

tied to: the more ties a focal actor has with contacts who themselves are tied to core actors, the closer 

is the focal actor to the network core (Borgatti and Everett 1999).  

A long-standing tenet among network researchers is that due to their structural position, core 

actors tend to “play the key coordinating roles…whereas the periphery is occupied by actors with less 

integrative importance” (Knoke et al. 1996, p. 23). Consider the position of node A and node B in 

                                                      
1
 To simplify our exposition, let us stipulate that in the remainder “specialization” signifies the opposite of 

“generality” (and the adjective “specialized” signifies the opposite of “generalist”), and vice-versa. Similarly, let 

us stipulate that “core” signifies the opposite of “periphery” (and “peripheral”), and vice-versa.   
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Figure 1, representing a core and a peripheral actor, respectively. A’s network position differs from 

B’s in two important ways, pertaining to the structure of both direct and indirect connections in which 

the two actors are embedded. First, A is directly tied to a large number of densely interconnected core 

contacts. B, on the other hand, is directly connected to a couple of core actors but is otherwise 

isolated. Second, shifting the focus to actors’ indirect connections shows that A is at a relatively close 

distance from virtually all nodes in the network. B, conversely, is several steps away from the vast 

majority of other peripheral nodes, which it can only reach via the core
2
. Whether one looks at actors’ 

local network of direct connections or at their broader network of indirect ties, therefore, A’s network 

position encompasses a wider and structurally more heterogeneous array of contacts than B’s. Hence 

the network argument that A is generally in the position to integrate and coordinate a broader range of 

contacts (and thus of knowledge, resources and opportunities) than does B (Knoke et al. 1996).  

The integrating role of core organizations is especially evident in the context of our empirical 

setting – the evolving network of R&D alliances formed among US-based firms, both within and 

across technological sectors. R&D alliances represent formal collaborative agreements involving 

exchange, sharing, or co-development of technologies and services (Zhang et al. 2007, p. 515). Thus, 

on the one hand R&D alliances represent a prime source of learning for the organization, facilitating 

the absorption of both tacit and codified technological knowledge from one’s partners (Dyer and 

Nobeoka 2000, Kale and Singh 2000, Powell et al. 1996). On the other hand, through R&D alliances 

firms can mobilize knowledge, resources complementary assets both upstream and downstream, 

including functional capabilities in critical areas such as new product development, marketing, and 

distribution (Arora and Gambardella 1990, Grant and Baden-Fuller 2004, Rothaermel and Boeker 

2008). Hence, organizations embedded within the core of the R&D network have the potential to 

acquire knowledge and to utilize resources and complementary assets from across a wider portion of 

the technological landscape. Conversely, the more peripheral an organization’s position in the R&D 

network, the narrower and more structurally homogeneous the set of direct and indirect contacts from 

                                                      
2
 Consider the following statistics. A can reach 97% of the nodes within just two steps while for B, only half of 

the network is reachable within 2 steps. At a global network level, the sum of geodesic distances (i.e., the 

shortest number of steps) it takes B to reach every other network node is roughly 60% larger than it is for A. 

Lastly, 100% of the geodesics (i.e., the shortest paths) through which B reaches out to other nodes go through 

the core.   
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which it can potentially acquire knowledge and draw resources. These arguments are summarized by 

the following proposition. 

Proposition 1: Through their direct and indirect contacts, organizations positioned in the core of 

the R&D network can reach out to a greater portion of the technological landscape. As a result, (a) 

they can mobilize knowledge, resources and complementary assets from across a wider set of 

technological sectors compared to peripheral organizations; (b) they are exposed to and absorb 

knowledge stemming from a wider range of technological sectors than peripheral organizations. 

A key contribution of the inter-organizational network literature is that because core 

organizations have greater integrating potential than peripheral ones, an organization’s position along 

the core-periphery continuum deeply shapes the structure of interests and opportunities the 

organization is faced with (Knoke et al. 1996). As we will elaborate below, a specific hypothesis that 

can be derived from this general argument is that core organizations tend to preferentially attract, and 

to be attracted to, R&D partners characterized by a generalist technological knowledge, while 

peripheral organizations preferentially form R&D alliances with technological specialists. Before we 

articulate this argument, however, it is important to explain the difference between technological 

generalists and technological specialists and why such difference impinges on the alliance formation 

process.  

Technological generalists and technological specialists 

While many aspects of an organization’s knowledge base have been shown to impact critical 

organizational outcomes (Yayavaram and Ahuja 2008), one aspect that has drawn particular attention 

is the distinction between generalist and specialized technological knowledge bases (Arora and 

Gambardella 1990, J. M. Mezias and S. J. Mezias 2000, Mitchell and K. Singh 1993, Zhang et al. 

2007). An organization is a technological generalist insofar as its technological knowledge can be 

turned into economically valuable products or services across a wide range of application sectors; 

conversely, it is a technological specialist if its technological knowledge can be usefully applied only 

within a narrow range of application sectors (Bresnahan and Trajtenberg 1995)
3
. Thus, an ideal-

                                                      
3
 The distinction between technological generalists and technological specialists is grounded in one of two 

widely debated assumptions (Rosenberg 1994). A first, stronger assumption is that a firm’s accumulated 
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typical technological generalist is a firm whose knowledge base is anchored in a “general purpose 

technology,” such as mobile data communication technologies or security software technologies, 

which it can adapt at a relatively low cost to serve multiple application sectors or market segments. At 

the opposite end, a pure technological specialist is a firm whose knowledge can be usefully applied to 

only a narrow and well-defined set of applications (Bresnahan and Trajtenberg 1995, David 1990, 

Gambardella and Giarratana forthcoming, Moser and Nicholas 2004, Rosenberg and Trajtenberg 

2004). Early producers of numerical control machines represent a case in point, as the value of their 

technological knowledge was entirely specific to a thin range of applications within either the 

aerospace or the automobile industry (Bresnahan and Gambardella 1998).  

The distinction between generalist and specialized knowledge bases is theoretically important 

because generalists and specialists face a fundamentally different interest and opportunity structure. 

As Gambardella and McGahan pointed out (2010, p. 265), “the innovator focuses on maximizing the 

number of high-value applications that may involve its technology, which it can affect by investing in 

skills, resources and capabilities.” Because their technological knowledge is more widely applicable, 

technological generalists have an incentive to maximize scope economies by expanding the range of 

application sectors served even if this means undergoing the benefits of specializing in any specific 

application sector (Miller, 2004). An example is Universal Oil Products (UOP), a company that built 

its distinctive knowledge base around the so-called Dubbs process: a general method for continuous 

cracking of any kind of oil. In what turned out to be a remarkably successful strategy, UOP never 

attempted to become a specialist in any of the application sectors it served. Rather, it kept developing 

ways to redeploy its technological knowledge across ever new applications sectors. As a result, “UOP 

has been able to assemble a combination of processing ‘blocks’ that would allow a producer to make 

any combination and relative quantity of benzene, toluene, and xylene isomers from any conceivable 

                                                                                                                                                                     
technological knowledge defines the range of possible applications the firm can and cannot develop. A second, 

weaker assumption is that a firm’s knowledge merely affects the cost-benefit structure associated with 

alternative technological developments. Thus according to this second assumption, the technological knowledge 

of a generalist is such that it is advantageous for the firm to develop applications across a wide range of 

application sectors, while the opposite is true for technological specialists. As will become clear in the following 

pages, this weaker assumption suffices for our theoretical argument.   
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feedstock,” resulting in huge scope economies and an undefeatable competitive position (Bresnahan 

and Gambardella 1998, p. 265).  

While maximizing the breadth of applicability of their knowledge base is advantageous for 

technological generalists, the situation is reversed for technological specialists. As their knowledge 

base is characterized by limited generality, pursuing scope economies by developing applications 

across new application sectors would be exceedingly costly. On the other hand, their narrow focus 

puts them in a better position to exploit the advantages of technological specialization relative to 

generalist firms. “An inherent tension in any division of labor is that the distinct users of a technology, 

or for that matter of a good or service, employ it for different purposes. Consequently, they have 

different needs, and these needs would be best satisfied by producing, adapting, or using the 

technology or input according to their special goals and demands” (Bresnahan and Gambardella 1998, 

p. 255). Due to the narrow applicability of their knowledge base, technological specialists thus have 

an incentive to deepen penetration and develop superior technological offerings within a limited set of 

applications, even if this comes at the cost of undergoing potential scope economies. These arguments 

lead to the following proposition.     

Proposition 2: The greater the generality of an organization’s technological knowledge base, the 

stronger its incentive to exploit scope economies by maximizing the breadth of application sectors 

served.  

Technological generality, network coreness, and R&D alliance formation  

What drives the formation of R&D alliances? Providing insight into this question, Mitsuashi and 

Greve (2009, p. 975) argued that “[a]lliance formation is a selective process in which organizational 

characteristics influence the likelihood of participation and the specific pairings that result”. In line 

with this view, prior research has conceptualized the formation of R&D alliances as a matching 

process whereby two organizations are more likely to ally if they both expect to gain from combining 

their own knowledge, resources and complementary assets with the knowledge, resources and 

complementary assets controlled by the partner organization (e.g., Rothaermel and Boeker 2008). 

A specific implication of this argument, we suggest, is that technological generalists are more 

likely than technological specialists to form R&D alliances with organizations positioned within the 
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core of the R&D network. An organization’s position along the core-periphery structure of the 

network may affect the alliance formation process because an organization’s attractiveness as a 

potential R&D partner does not only reflect the knowledge, resources and complementary assets it 

owns, but also those that it can mobilize through its alliance network (Lavie 2006, Zaheer and Bell 

2005). From this perspective, core organizations represent an R&D partner that is ideally suited to 

pursue technological generalists’ preferred strategy, i.e., to reap scope economies by broadening the 

range of application sectors in which their generalist knowledge base can be deployed. As stated in 

proposition 1a, through their alliance network core organizations can reach out to a much wider 

portion of the technological landscape, relative to peripheral organizations. As a result, they are in a 

stronger position to mobilize knowledge, resources and complementary assets that may help 

technological generalists to convert their knowledge into economically valuable products, services 

and technologies across many application sectors. By a similar logic, core organizations should have a 

stronger incentive to form R&D alliances with technological generalists than with technological 

specialists, because the former are better equipped to maximize the value inherent in their network 

position. Although forming an alliance with a technological specialist may provide superior offerings 

within a specific and well-circumscribed application sector, allying with a generalist R&D partner is 

more likely to yield spillovers and opportunities throughout the dense but far-reaching alliance 

portfolio characteristic of core organizations. In line with selective matching process described above, 

we therefore posit that technological generalists are more likely than technological specialists to form 

R&D alliances with organizations embedded within the core of the R&D network.  

Proposition 3: The greater the generality of an organization’s technological knowledge base, the 

more likely is the organization to form R&D alliances with partners positioned in the core of the R&D 

network.  

The coevolution of organizations’ knowledge base and network position 

The key contention of this paper is that the degree of generality of an organization’s knowledge base 

co-evolves with the organization’s position along the core-periphery structure of the R&D alliance 

network. This argument postulates a two-way causal dynamic. First, the more an organization 

develops a generalist knowledge base, the more it will move towards the core of the R&D network. 
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Second, the more an organization moves towards the core of the R&D network, the more it will 

develop a generalist knowledge base. We now explicate each of these theoretical claims in turn.  

As illustrated by Figure 1, an organization’s position along the core-periphery structure of the 

R&D network reflects the pattern of alliances it establishes with other organizations. Specifically, a 

focal organization’s coreness is recursively defined by the coreness of the organizations with which it 

allies: the more R&D alliances a focal organization forms with partners positioned in the core of the 

R&D network, the more the focal organization will move towards the core (Borgatti and Everett 

1999). Combined with this simple mechanism of network dynamics, a straightforward implication of 

Proposition 3 is that expanding the generality of an organization’s knowledge base increases the 

likelihood that an organization will form R&D alliances with core partners and, hence, that it will 

move towards the core of the R&D network. By implication, the more specialized an organization’s 

knowledge base becomes, the more the organization will drift towards the network periphery.  

Hypothesis 1: The greater the generality an organization’s technological knowledge base, 

the more the organization will move towards the core of the R&D alliance network; the more 

specialized an organization’s technological knowledge base, the more the organization will move 

towards the periphery of the R&D alliance network.  

The arguments developed thus far suggest two reasons why this causal relation may run in the 

opposite direction, too. First, even though an organization’s technological knowledge accumulates in 

a path-dependent fashion (Cohen and Levinthal 1990), firms may steer its development through R&D 

investment decisions aimed at seizing the value inherent in their unique knowledge base (Gambardella 

and McGahan 2010, Scherer 1965). As stated by Proposition 1a, core organizations are in a better 

position than peripheral organizations to mobilize knowledge, resources and complementary assets 

across multiple application sectors, either by tapping directly from their R&D partners or through 

their partners’ intermediation. For that reason, it is in their best interest to develop technological 

knowledge that can be converted relatively easily into valuable products, technologies or services 

across a wide variety of application sectors. Hence the closer an organization is to the core of the 

R&D network, the stronger should be its incentive to increase the generality of its technological 

knowledge base. Conversely, investing in developing generalist technological knowledge is less 
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attractive for peripheral organizations, as their network position does not grant them access to the 

knowledge, resources and complementary assets necessary to fully exploit its value.  

Second, in addition to having an incentive to do so, core organizations may tend to systematically 

broaden the generality of their knowledge base because, as stated by Proposition 1b, the knowledge 

accruing to core organizations comes from direct and indirect contacts scattered throughout a much 

wider portion of the technological landscape compared to peripheral organizations. Hence, core 

organizations are likely to absorb knowledge stemming from diverse technological sectors, while 

peripheral organizations are likely to be exposed to a more homogeneous knowledge environment. 

These arguments lead us to our second hypothesis: 

Hypothesis 2: The closer is an organization to the core of the R&D alliance network, the 

more the organization will develop a generalist technological knowledge base; conversely, the 

closer is an organization to the periphery of the R&D alliance network, the more the organization 

will develop a specialized technological knowledge base. 

As it appears, the combined effect of hypotheses 1 and 2 implies a self-reinforcing causal 

dynamics whereby the internal knowledge base of an organization systematically coevolves with its 

position in the external R&D network. Next we discuss the data and methods used to put this 

argument to a rigorous empirical test. 

Data, measures, and methods 

As argued above, a large share of R&D alliance ties cut across technological boundaries (Schilling 

2009). Hence, capturing the co-evolution of organizations’ knowledge base and network dynamics 

requires us to collect information on all R&D alliances, not just those confined within sectorial 

boundaries. To this end, we collected data on all R&D alliances, in any industrial or technological 

sector, registered with the US Department of Justice under the National Cooperative Research Act 

(NCRA) between 1985 and 2003. Our data is similar to that reported in the CORE database in that 

both are drawn from filings reported in the Federal Register. A key strength of using the Federal 

Register as a source of R&D alliance data is that it allows us to “capture a complete population – all 

of the collaboration agreements filed under the NCRA Act…[which] has some important inference 

advantages over the other datasets” (Schilling 2009, p. 237). Unlike the CORE database, we obtained 
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and tracked membership in the various research joint ventures (RJV) at the organization and 

arrangement level. Because there may be inconsistencies in naming of organizational members across 

Federal Register filings, and because collecting homogeneous and reliable organization-level data 

among non-public firms is almost impossible, we limit our analysis to publicly traded firms in the US. 

This results in a final sample of 762 organizations for a total of 4941 organization-year observations, 

with the average organization being in 6.5 R&D consortia over the observation period. In addition to 

R&D alliance data, we collected two additional types of longitudinal data. First, we obtained yearly 

financial and organizational measures from Standard and Poor’s Research Insight. Second, we 

collected all patents granted to each firm by the USPTO (United States Patent and Trademark Office), 

in any technological sector, throughout the observation period. To trace the time at which a patent was 

filed by the organizations in our sample, we used the patent filing date. The patent data was collected 

from Bronwin Hall’s website, who updated the NBER original patent dataset (Hall et al. 2001) up to 

year 2004 as part of the NBER project. We combined these three data sources to measure our 

dependent and independent variables, which we describe next.  

Dependent variables 

Coreness: The degree of coreness of an organization within the R&D network is measured following 

Borgatti and Everett (1999). The authors propose a continuous model in which each node is assigned 

a measure of coreness representing how close they are to the core (and hence how far they are from 

the periphery) of the network. The choice to measure coreness as a continuous variable derives from 

our theoretical conceptualization, which was premised on the view that organizations’ network 

position varies along a core-periphery continuum. Furthermore, the network data we collected allows 

us to represent the strength of R&D relationships as valued ties, rather than one-zero dichotomies, 

where strength reflects the number of current R&D alliances between any pair of organizations at any 

point in time. Borgatti and Everett (1999) propose the following model to define the coreness of each 

organization in the network: 

Cij=cicj     (1)  

where C “…is a vector of nonnegative values indicating the degree of coreness of each node. 

Thus, the pattern matrix has (i) large values for pairs of nodes that are both high in coreness, (ii) 
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middling values for pairs of nodes in which one is high in coreness and the other is not, and (iii) low 

values for pairs of nodes that are both peripheral”. The values in C are estimated empirically through 

an algorithm that “finds a set of values ci such that the matrix correlation between ci and cj and the 

data matrix is maximized” (Borgatti and Everett 1999, p. 387). The algorithm allows one to measure 

the coreness of nodes whether or not they belong to the largest component. Conventionally, the 

coreness of isolate nodes is set to zero to signify that their distance from the core is largest. Because 

bounded variables violate critical assumptions underlying least squares regressions, we followed 

established practice and linearized our measure of coreness by taking its logit transform. 

Knowledge Base Generality: To measure how general is the technological knowledge base of an 

organization, we constructed a measure of generality following an established approach in the 

innovation literature. Namely, we took all successful patent applications filed in a given year by each 

firm in our population. Then, following Trajtenberg et al. (1997) and others (e.g, Argyres and 

Silverman 2004, Chatterji and Fabrizio 2012), we tracked the pattern of forward citations of each of 

those patents, allowing us to assess whether they represent general-purpose or specialist technological 

knowledge. In particular, we first calculated the degree of generality of each patent as follows: 

Pi = 1 - 


n

j

ijs
1

2
    (2) 

where sij indicates the proportion of citations received by patent i that belongs to patent class j, 

out of the ni patent classes from which i received citations (time subscripts are omitted for the sake of 

simplicity). Therefore, if patent i is cited by subsequent patents that belong to a wide range of 

technological fields the measure will be high, whereas if most citations are concentrated in a few 

fields the measure of generality will be close to zero. Building on this patent-level measure of 

generality, we then calculated the generality of firm k’s knowledge base as the average generality 

across all of k’s patents, z, in a given year
4
: 

                                                      
4
 As also this measure is bound between zero and one, we linearized it by taking its logit transform. For both 

Coreness and Knowledge Base Generality, we replaced zeros by 0.0001 and ones by 0.9999 to avoid losing 

observations through the logit transformation. As a robustness check we tried several alternative values. As we 

explain in detail in the Additional Analysis section, we also measured Knowledge Base Generality using two 

alternative measures. The results of our analyses proved to be consistent under all these robustness checks. 
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Gk = 


z

i

i

Z

P

1

   (3) 

Independent variables 

We used a number of variables obtained from Standard & Poor’s Research Insight database, whose 

effects we aim to control for. We controlled for firms’ Total assets, measured as the sum total of all 

assets of a firm in a given year, because organizations with greater total assets tend to be more 

resourceful. Hence, one might reasonably argue that the total assets of a firm may positively impact 

both their generality and their coreness. Similarly, we controlled for the total number of Employees of 

each firm in each year, as this provides a widely used measure of organizational size. Also, we 

measured firms’ R&D cost per employee to control for the fact that some organizations are more 

R&D-intensive than others. Given our emphasis on the role of knowledge as a driver of R&D alliance 

formation, controlling for R&D intensity is important to ensure that the effects we observe can be 

ascribed to our variable of theoretical interest. In models not reported here, we controlled for a wider 

set of factors including firms’ intangible assets, advertising costs, and financial performance. These 

variables created multi-collinearity, though, and were therefore excluded from the final models.  

Instrumental variables 

Because we hypothesized our two dependent variables to be endogenously related, we also 

constructed a set of instrumental variables to help us tease out the effects postulated by our theory. 

Constructing a valid instrument set allows one to exploit only the exogenous variation in a regression 

equation, making it possible to correctly estimate causal effects even in the presence of endogeneity. 

Instrumental variables are valid if they meet both a “relevance” criterion (i.e., they have a significant 

impact on the endogenous regressor) and an “exogeneity” criterion (i.e., they do not directly affect the 

dependent variable of the structural equation and, hence, are uncorrelated with the disturbance term). 

We selected two instrumental variables for each endogenous variable because this allowes us to run a 

comprehensive set of diagnostic analyses to test the validity of the instruments. In what follows we 

present the theoretical rationale that guided our choice of instruments; in the results section we will 

discuss the formal tests carried out to assess the validity of the instruments.  
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We used a major earthquake occurred in the San Fernando Valley at Northridge (California) in 

January 1994, to instrument organizations’ coreness. With total damages estimated at $44 billion
5
, the 

devastation caused by the California Earthquake had a severe impact on the state’s infrastructure. 

What is crucial here, the earthquake resulted in major damages to the physical infrastructure 

supporting Californian R&D activities by temporarily breaking down or severely impairing business 

organizations’ R&D sites, supply networks, and communication systems (Toh 2007). As a result, we 

expect the Northridge earthquake to have reduced the ability of Californian firms to initiate or 

continue R&D collaborations (Toh 2007) and, hence, to have temporarily diminished those 

organizations’ coreness in the global R&D network. Further, we expect the Northridge earthquake to 

be a suitable instrumental variable because, in addition to representing an undoubtedly exogenous 

shock affecting the coreness of Californian firms, it is unlikely to have affected those organizations’ 

tendency to generate specialized versus generalist technological knowledge.  

We used State Property Net Subsidies as a second instrumental variable for Coreness. This 

variable comes from the NBER Taxsim (http://users.nber.org/~taxsim/) database and it captures 

differences in tax deduction regimes for property of land and buildings. It is computed for every year 

and state and is expressed as the number of dollar cents that are deductible for any additional dollar of 

property taxes owed. As land and buildings are an important part of the physical infrastructure 

supporting R&D activities, we reckoned that such net subsidies would increase a firm’s ability and 

propensity to form R&D alliances and, hence, to move towards the core of the R&D network. 

However, we do not expect such subsidies to directly influence the degree of generality or 

specialization of an organization’s technological knowledge base.   

To instrument our second dependent variable – Knowledge Base Generality – we exploit a 

technological shock occurred in the mid-nineties, which profoundly changed the knowledge profile of 

firms operating in the information technology sector: the rise of the internet. While the inception of 

the internet can be traced back to the ARPANET backbone developed in the late 1970s, it is only by 

the mid-1990s that the number of internet hosts and regional network access points grew explosively, 

                                                      
5
 OES (California Governor’s Office of Emergency Services) (1997). “The Northridge Earthquake of January 

17, 1994: Report of Data Collection and Analysis, Part B: Analysis and Trends”, Irvine and Pasadena, EQE 

International and Office of Emergency Services. Cited in (Toh 2007). 
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unleashing a huge economic potential unforeseen even by practitioners and technology experts. 

Complementing a detailed quantitative analysis of the internet shock, Schilling (2011, p. 7) reports 

two evocative quotes that give a sense of how the perception of the internet changed in less than two 

years: “Let’s face it. Not many members of the public -- even the computer literate public - are on the 

Internet” (John Goodwin, a tutorial for the internet, July of 1993); “Businesses and entrepreneurs are 

rushing into cyberspace like forty-niners driven mad by gold fever” (Vic Sussman and Kenan Pollack, 

U.S. News and World Reports, November of 1995). 

Due to its sudden and unforeseen nature, numerous studies have characterized the internet 

explosion peak of the mid-1990s as a “technology shock” (Schilling 2011). The epicentre of this 

shock was in the information technology sector, where the internet acted as a “general purpose 

technology” that pushed organizations to dramatically expand their knowledge base so as to be able to 

adapt their offerings to a much wider range of application sectors. Consistent with this reconstruction 

we constructed a variable, labelled IT Internet Shock, which we used to instrument organizations’ 

knowledge base generality. The variable is set to 1 if an observation (i) pertains to a firm belonging to 

the Information sector according to the NAICS classification system and (ii) is recorded between 

1994 and 1996; it is set to zero otherwise.  

In addition to IT Internet Shock, we instrument organizations’ generality through a second 

variable, Effective Size, which captures the structural holes brokered by an organization at any given 

point in time (Burt 1992, pp. 52–57). Because organizations embedded in structural holes are exposed 

to a heterogeneous set of mutually unconnected R&D partners (Ahuja 2000b), we expected 

organizations’ effective size to have a positive impact on organizations’ generality. However, we do 

not see any reason why Effective Size should impact organizations’ Coreness.      

Results 

Descriptive analyses 

Figure 2 describes how the R&D alliance network analyzed in the study changed over the observation 

period. The figure shows that the number of organizations that registered at least one R&D alliance 

peaked around year 2000 reaching nearly one thousand organizations, and then dropped quite 

dramatically immediately after. Similarly, the total number of R&D alliances observed in the study 
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population approached its maximum in year 2000, which also corresponded to a peak in the total 

volume of R&D investments incurred by the organizations participating in the network. Inspecting the 

data at a more microscopic level allows us to gain further insight into these aggregate trends. In 

particular, it is interesting to notice that the number of registered R&D consortia peaked and then 

began to decline in 1995-1996, hence a few years earlier than year 2000. However, this decline was 

partly countervailed by two factors occurring at the same time. On the one hand, the average size of  

R&D consortia, which had reached its minimum in 1995 with just about two organizations per 

consortium on average, began to rise again starting in 1996 and continued until the end of the 

observation  period. As a result, at the end of the observation period the average R&D consortium 

comprised as many as 4.5 organizations, while the average number of R&D alliances per organization 

was at its peak. On the other hand, the average R&D investment of the organizations belonging to the 

network began to grow in the same years, and the growth further steepened after year 2000. 

Consistent with this pattern of results, a closer inspection of the data shows that the composition of the 

network changed after 1995-1996, meaning that the organizations that exited the network were less 

R&D intensive than those that stayed or entered it.  

Overall, these analyses point to a few important patterns characterizing the evolution of the R&D 

alliance network examined in this paper, which can be summarized as follows. Around year 2000 the 

R&D alliance network began to rapidly shrink as testified by a decline in (a) the total number of 

organizations in the network, (b) the total number of R&D alliances connecting those organizations 

and (c) the total volume of R&D investments made by those organizations. If one looks more closely 

at the micro-structure of the R&D network, though, it also becomes apparent that the composition of 

the R&D alliance network began to change in 1995-1996: compared to the organizations that 

remained in or entered the network, the organizations leaving the network featured (d) a lower 

average R&D investment level and (e) entertained fewer R&D alliances.  

------------------------------------FIGURES 2-3 ABOUT HERE---------------------------------- 

Because our arguments rest on the notion of coreness, it is important to demonstrate that the 

observed R&D network has a core-periphery structure – and that this structure is robust to the 

structural and composition changes just described. As mentioned earlier, a core-periphery structure 



18 

 

consists of a cohesive clique of densely interconnected core actors surrounded by a fringe of weakly 

connected peripheral actors, as exemplified by Figure 1. Borgatti and Everett (1999) developed a 

model that quantifies, through a parameter comprised between zero and one, the extent to which an 

observed network conforms to such a structure; Figure 3 shows how this parameter changes over the 

observation period for our R&D alliance network. The graph shows two important things. First, the 

R&D alliance network has a distinctive core-periphery structure, with values ranging from a 

minimum of 0.58 to a maximum of 0.9 and an average value of 0.73. While there is no clear-cut 

threshold to establish whether a network has a core-periphery structure, previous work has considered 

an average 0.55 value to represent an acceptable fit level (Cattani and Ferriani 2008). Second, the 

network preserved a robust core-periphery structure in the face of the structural and compositional 

changes described above, reaching an almost complete fit towards the end of the observation period.  

Econometric analyses 

Table 1 provides means, standard deviations, and correlations among the variables used in the model. 

Table 2 presents the results of several panel regression specifications used to test our hypotheses. We 

begin by noticing that multicollinearity does not represent a problem: across the twelve models 

reported in table 2, the highest individual-variable VIF is 4.45 while models’ mean VIFs range from 

1.10 to 2.72, well within conventional acceptability levels. Table 2 presents two sets of models: those 

denoted by (a) predict Knowledge Base Generality; those denoted by (b) predict Coreness. Within 

each set, we report results obtained under four alternative estimators (OLS with fixed effects, 2SLS 

with fixed effects, 2SLS with first-differenced variables, 3SLS with fixed effects) and two alternative 

lag structures (contemporaneous and one-year lagged).  

---------------------------------TABLE 1 ABOUT HERE------------------------------------------- 

Under the hypothesis that Knowledge Base Generality and Coreness are endogenously related, as 

our theory postulates, the OLS estimator yields biased estimates. Since most published work on the 

effects of inter-organizational networks on organizations’ knowledge-based outputs (or vice-versa) 

use the OLS fixed-effects estimator, however, we report coefficient estimates obtained with the same 

approach in models 1a through 2b of table 2. The remaining eight models are based on a system of 

equations of the following general class:  
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y it =  a1 + b1x it + i1r 1it + c1z it + d1ki + f1ht + e1it 

x it =  a2 + b2y it + i2r 2it + c2z it + d2ki + f2ht + e2it 

where ht represents unit-invariant time-varying factors; ki models firm fixed effects; y it and x it 

measure an organization’s coreness and technological generality, respectively; z it is a set of control 

variables common to both equations; r 1it is a set of excluded instrumental variables for x it; and, r 2it is a 

set of excluded instrumental variables for y it. All variables on the right-hand side are assumed to be 

exogenous with the exception of x it in the first equation and of  y it in the second. This model assumes 

y it  and x it to be endogenously related, as postulated by our theory, yielding efficient and unbiased 

estimations even in the presence of endogeneity (Wooldridge 2002). Within this general framework, 

models 3a through 5b employ a 2-stage Least Square estimator (2SLS), whereby the error terms e1it 

and e2it are assumed to be independently and identically distributed within each equation but 

uncorrelated across equations. Specifically, models 3a and 3b report 2SLS estimates based on a fixed 

effects estimator and contemporaneous effects, while in models 4a and 4b all right-hand side variables 

are lagged one year. Models 5a and 5b, on the other hand, report 2SLS estimates based on first 

difference transformations. Insofar as e1it and e2it are uncorrelated across equations, and the 

instruments used in the first stage are relevant and valid, all three specifications of the 2SLS estimator 

yield unbiased estimates. If e1it and e2it are correlated across equations, however, a 3SLS estimator 

provides a superior solution as it allows the error structure of the equations to co-vary. Models 6a and 

6b use a 3-Stage Least Square estimator (3SLS), which extends the 2SLS estimator by allowing for 

e1it and e2it to be correlated across equations. Testing our hypotheses through this set of 

complementary econometric specifications is important both in order to assess the robustness of our 

results and in order to examine our causality claims in a precise and granular fashion.   

------------------------------------TABLE 2 ABOUT HERE------------------------------------------- 

Let us now to turn the results. As said, our hypothesis is that a two-way causal relationship links 

the degree of coreness of an organization within the R&D network and the generality of the 

organization’s technological knowledge base. A logical implication of this argument is that Coreness 

is an endogeneous regressor of Knowledge Base Generality, and vice-versa. To test whether this is the 

case, we performed a set of pair-wise Hausman tests comparing models where the suspect endogenous 

(4) 
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variable is treated as endogenous, with an equivalent model where it is treated as exogenous. Under 

the null hypothesis that the suspect endogenous variable is exogenous, the test statistic is distributed 

as chi-squared with degrees of freedom equal to the number of regressors tested. Hence if the null 

hypothesis is rejected, the variable in question is in fact endogenous. The results of the test, reported 

at the bottom of table 2, show that the null hypothesis is rejected across all 2SLS models. This finding 

supports our theoretical expectation, as it implies that Coreness and Knowledge Base Generality are 

endogenously co-determined.  

To test the causal effect of Coreness on Knowledge Base Generality, and the reverse causal effect 

of Knowledge Base Generality on Coreness, we therefore need a valid instrument set for each 

endogenous regressor. As explained above, we selected California Earthquake and State Property Tax  

as instruments for Coreness, while Internet IT Shock and Effective Size were chosen as instruments 

for Knowledge Base Generality. Assessing the validity of these instruments amounts to testing 

whether they meet both the “relevance” and “exogeneity” criteria. We carried out three standard 

econometric tests to assess whether both conditions are met by our chosen instrument sets. First, the 

Anderson canonical correlations under-identification test is a test of whether the excluded instruments 

are “relevant,” that is, correlated with the endogenous regressor (Anderson 1984). A rejection of the 

null hypothesis in this test indicates that the model is identified, hence the chosen instrument set has a 

significant impact on the endogeneous regressor. Second, the weak identification test (Cragg and 

Donald 1993) extends the under-identification test by examining whether the excluded instruments, 

even if correlated with the endogenous regressor, may result in an ill-identified model because the 

impact of the instruments is too weak. A rejection of the null hypothesis in this test means that the 

chosen instrument set has a sufficiently large impact on the endogenous regressor, yielding a correctly 

identified model. Third, we performed a Sargan-Hansen test of over-identifying restrictions to assess 

whether the instruments are exogenous, that is, uncorrelated with the error term in the structural 

equation. A rejection of the null hypothesis in this test signals that the chosen instruments may have 

been incorrectly excluded from the estimated equation and hence may not be valid (Hayashi 2000). 

The three tests are reported at the bottom of table 2. The results show that the chosen instruments are 
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valid according to all three tests in all 2SLS specifications, implying that the reported models yield 

consistent and unbiased coefficient estimates.  

Let us now turn our attention to the coefficient estimates. We begin by noticing that both the sign 

and significance level of our variables of theoretical interest are stable across all twelve models. 

Hypothesis 1 predicted that the higher is the generality of an organization’s technological knowledge 

base the more the organization will tend to move towards the core of the R&D alliance network. 

Conversely, the higher is the specialization of an organization’s technological knowledge base the 

more it will move towards the periphery of the R&D network. Corroborating this hypothesis, 

Knowledge Base Generality has a positive and highly significant effect on Coreness in all models. 

Hypothesis 2 predicted that the closer is an organization to the core of the R&D alliance network the 

more it will increase the generality of its technological knowledge base; by contrast, the more 

peripheral a firm’s network position the more technologically specialized it will become. In line with 

this prediction, Coreness has a positive and highly significant effect on Knowledge Base Generality in 

all models. While demonstrating claims of causality is inherently difficult, these results do lend strong 

support for the hypothesis of a two-way causal relation linking the degree of generality of an 

organization’s knowledge base and its position in the R&D network.  

Inspecting the results obtained under each alternative model specification provides further insight 

into this self-reinforcing causal link. First, the results suggest that both causal effects – generality 

affecting coreness and coreness affecting generality – have a sizeable impact that explains a fair share 

of the observed variance, suggesting that these causal mechanisms are not merely statistically 

significant. Caution must always be used when interpreting coefficients in the context of instrumental 

variable regressions. Furthermore, interpreting Knowledge Base Generality and Coreness is 

complicated by the fact that both variables are expressed as logit transformations. With these caveats 

in mind, one useful approach is to conceive of the coefficients of Knowledge Base Generality and 

Coreness as representing elasticities of the two following ratios: Generality-to-Specialization and 

Core-to-Periphery. Interpreted this way, models 2a and 2b indicate that a 1% increase in the Coreness-

to-Periphery ratio yields a 5.7% increase in the Generality-to-Specialization ratio; conversely, a 1% 

increase in the Generality-to-Specialization ratio generates a 2.3% increase in the Coreness-to-
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Periphery ratio. Second, Coreness appears to have a stronger impact than Knowledge Base Generality 

across all model specifications, suggesting that the causal relation between the two is bidirectional but 

asymmetric. Third, even though both effects are still strong and highly significant after one year, as 

testified by models 3a and 3b, they appear to exert the strongest impact within the first year. 

Confirming the relevance of such short-term causal effect, models 4a and 4b use a first-difference 

estimator to show that a change in the degree of Coreness (Knowledge Base Generality) of a firm 

from one year to the next, results in a sizeable and statistically significant change in the Knowledge 

Base Generality (Coreness) of that same organization over the same time span.      

Moving to the control variables, our results show that firms with greater Earnings per Share tend 

to increase the generality of their technological knowledge base while at the same time they tend to 

move towards the periphery of the R&D alliance network. Conversely, larger organizations (i.e., 

organizations with more employees) develop more specialized knowledge bases and they tend to 

move towards the core of the R&D network – a pattern that, while less stable, appears to also 

characterize knowledge intensive organizations (i.e., organizations with a higher R&D cost per 

employee). Interestingly, these findings suggest that the self-reinforcing causal loop between 

knowledge base generality and network coreness is not left undisturbed in the context of our study 

but, rather, it is mitigated by factors such as organizations’ profitability and size. This consideration is 

important because, in the absence of such interfering influences, our co-evolutionary theory would 

lead to the unlikely implication that all generalist organizations will sooner or later end up in the 

network core, while the network periphery should only comprise technological specialists. Lastly, 

there is some evidence that organizations’ knowledge base and network position have been partly 

affected by unit-invariant time effects. In particular, organizations generally developed more 

specialized technological knowledge between 1985 and 1990 (1997-2002 is the reference category) 

while during those same years organizations’ average coreness appears to have reached a high point. 

Although the results obtained in the first-stage equations are not fully reported here, it is worthwhile 

noticing that the effects of the instrumental variables were consistent with our theoretical 

expectations, with the only exception of Internet IT Shock which turned out to have no effect on 

Knowledge Base Generality.  
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Robustness analyses 

Alternative measures of Generality 

Our measure of technological generality has been extensively used by prior research in both 

management and economics (e.g., Argyres and Silverman 2004, Chatterji and Fabrizio 2012, Moser 

and Nicholas 2004) and therefore it is our preferred choice. Nevertheless, two potential problems are 

inherent in this measure. First, being based on forward citations, it suffers from right truncation: more 

recent patents have a lower probability of receiving citations within the observation period. To ensure 

that our results are not biased by truncation we constructed an alternative measure of generality, 

labelled Normalized Generality. The measure is simply a normalized version of our original 

generality measure, where the normalizing factor is the number of forward cites received. 

Second, reflecting the view that an organization’s knowledge base is general insofar as it gets 

used across application sectors, our original measure of generality focuses on the forward citations 

received by that organization. As a robustness check, however, it may be useful to also measure the 

generality of organizations’ technological knowledge in alternative ways that are not dependent on 

forward citations. To this end we constructed a second alternative measure of generality, called 

Classification Generality. Parallel to our original measure of generality, Classification Generality is 

calculated by taking all of a firm’s patents in any given year and by computing (1 minus) a Herfindahl 

concentration index across USPTO primary classes. However, rather than the primary classes from 

which a firm’s forward citations originate, this time the Herfindahl index pertains to the primary 

classes within which a firm’s patents are classified by the USPTO patent examiner. This measure has 

been used in prior research to assess firms’ technological diversity (e.g., Garcia-Vega 2006). Just like 

with our original generality measure, we take the logit transform of this variable to make it suitable to 

least squares regressions (again, zeros are transformed into 0.0001 and ones into 0.9999).  

Figure 4 shows how the three measures of generality change over time. As it appears, both 

Normalized Generality and Classification Generality display a decline towards the end of the 

observation period, but this decline is less sharp than for our original measure. Table 3 report the 

results of these robustness checks. All models are fixed-effects 2SLS estimations with simultaneous 

effects, where the instrument set is the same as in the models reported in table 2. In models 7a and 7b, 
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generality is measured by Normalized Generality, while in models 8a and 8b it is measured by 

Classification Generality. In all models, results are fully consistent with our main findings
6
.     

Missing values 

All studies using Compustat data have many missing values. In the models reported in table 2, we 

dealt with missing values by imputing them through the impute command in Stata 12. Even though we 

used Compustat data exclusively to construct control variables, and not for our variables of theoretical 

interest, the share of missing values for the Compustat variables is substantial as it ranges from 28% 

to 38%. This casts a doubt on the validity of our control variables. To ensure that the results are not 

unduly influenced by our imputation of missing values, we ran two additional tests. First, we 

constructed a dummy variable (Dummy Missing) that identifies any observation associated with a 

missing value, and we added it as a control both in the first-stage and in the structural equations. As it 

turns out, Dummy Missing is positively associated with Knowledge Base Generality but not with 

Coreness (models 9a and 9b). More importantly, including this additional variable does not affect our 

effects of theoretical interest. Second, we took a more radical approach and excluded all cases 

associated with a missing value. As shown by models 10a and 10b, this more than halved the sample 

size but left unaltered our effects of interest. 

Time and data truncation  

The models reported in table 2 control for possible unit-invariant time-varying effects by means of 

sub-period (1985-1990, 1991-1996, 1997-2002) dummy variables. While this allowed us to capture 

the effects of time without a pre-specified functional form, often time is modelled by introducing a 

linear and a quadratic clock indicator. Models 11a and 11b report the results of models where time is 

specified in this way. Time has a curvilinear effect on both generality and coreness, although the 

hump is reversed. Modelling time in this way did not affect our effects of interest.  

As mentioned, our measure of generality is right truncated as it is based on forward citations. 

While the two alternative measures of generality proposed above reassure us that our results are not 

unduly affected by right truncation, the problem of right truncation may affect more than just our 

                                                      
6
 Notice according the Sargan over-identification test, it cannot be concluded that the instruments are 

uncorrelated with the error of the structural equation in models 7b, 8a and 8b. 
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generality measure. Namely, inspecting the data shows a radical drop in the number of patents filed 

by the organizations in our sample after year 2000 that is at best suspicious. We suspect that this may 

reflect the fact that, even though Hall’s updated NBER dataset supposedly covers up to 2004, some of 

the patents filed before 2006 had not yet been granted by the time the data were collected. It therefore 

seems safe to test whether our effects hold even if we restrict the observation period to the years prior 

to 2000. Models 12a and 12 b report the results of these tests: our effects of interest remain unaltered.           

Conclusions 

The key contention of this paper is that there exists a self-reinforcing, co-evolutionary relationship 

between an organization’s knowledge base and network position. In particular, we argued that the 

more an organization moves towards the core of the R&D alliance network, the more it tends to build 

a generalist knowledge base with wide applicability across sectors. At the same time, the more an 

organization develops a generalist knowledge base, the more it tends to move towards the core of the 

R&D alliance network. We tested this co-evolutionary hypothesis using data on all R&D alliances 

registered in the US between 1985 and 2003, as well as patent-based and financial information on the 

organizations involved in those alliances. We found strong support for our hypotheses across a wide 

range of econometric specifications and robustness checks. By explicating how an organization’s 

knowledge base co-evolves with the network of ties it maintains with other organizations, the present 

paper furthers our understanding of the nature and dynamics of organizations.  

The paper contributes to the organizational debate in several ways. On a general level, we note 

that the theory developed in this study bridges two major intellectual divides that have traditionally 

generated alternative and seemingly incompatible views of the organization. The first divide 

originates from the fact that, even though organizational scholars typically assume the organization-

environment link to be unidirectional, they radically diverge in what they postulate to be the locus and 

direction of causality. One tradition of organization theory argues that organizations are essentially 

forged, through either internal adaptation or environmental selection, by the environment with which 

they are faced (e.g., Volberda et al. 2012). As they assume environments to be “relatively intractable 

to manipulation by single organizations” (Astley and Van de Ven 1983, p. 249), advocates of this 

view theorize a one-way causal relation flowing from the environment to the organization, whereby 
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an organization’s conduct, resource profile, and performance are ultimately a reflection of the position 

it occupies within the broader environment. A second tradition of organizational research, conversely, 

emphasizes the role of the organization as an active agent that continuously navigates and transforms 

the environment in which it thrives (e.g., Song et al. 2002). According to this view, “the environment 

is not to be viewed as a set of intractable constraints” but, rather, as a relatively dynamic and 

malleable resource space that “can be changed and manipulated” and with which the organization 

interacts in an attempt to pursue its interests and opportunities (Astley and Van de Ven 1983, p. 249).  

By demonstrating a co-evolutionary link between organizations and environment, the present 

study shows that although both theoretical perspectives are right in some important respects, neither is 

sufficient on its own to address the question it is after – how do organizations evolve? In line with the 

first tradition, we show that the position an organization occupies within the broader environment 

does influence the evolution of its internal resource profile. In line with the second view, however, we 

demonstrate that such influences run in the opposite direction too, as organizations systematically 

move across – and thereby transform – the external environment depending on the type of internal 

resources they develop. While we have no reason to expect that all aspects of an organization’s 

internal resource profile will necessarily co-evolve with the external environment, exploring co-

evolutionary dynamics such as the one unveiled in the presence study represents an opportunity to 

both gain deeper insight on the nature and evolution of organizations and to theoretically reconcile 

deep-seated but thus far unrelated streams of organizational scholarship.    

The current paper also bridges a second intellectual rupture that has long characterized, and 

presumably hampered, the organizational debate. Some scholars, mostly drawing from structuralist 

sociology, argue that theories of organization should root causal claims in the structure of 

opportunities facing organizations. Others, mostly inspired by the so-called strategic choice view, 

argue that causal claims should be derived from an organization’s interests (Astley and Van de Ven 

1983). As Ahuja (2000a) and others (Sytch et al. 2012) have compellingly argued, however, neither 

opportunity-based nor interest-based arguments alone are sufficient to build satisfactory explanations 

of how organizations operate and how they relate to their external environment. In line with this 

argument, the present paper is premised on the explicit recognition that to understand the co-evolution 
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of an organization’s knowledge base and network position, it is essential to jointly consider both its 

opportunities and its interests structure. Following this explanatory logic, for example, we argued that 

whether an organization will move towards the core or towards the periphery of the R&D network 

depends on which alliances the organization is able to form (i.e., which R&D partners it attracts) and 

willing to form (i.e., which R&D partners it is attracted to).  

In addition to establishing linkages across long-standing divides on the nature and evolution of 

organizations, the present study contributes to our understanding of organizations by advancing two 

prominent lines of theoretical development. Inter-organizational network theorists recognize the 

importance of core-periphery structures, arguing that the position an organization occupies within 

such structures deeply influences its behavior and performance (Cattani and Ferriani 2008, Connelly 

et al. 2011). While the effects of core-periphery structures have been examined in some depth, 

however, the question of why organizations come to occupy core or peripheral network positions has 

been left unattended. The present study proposes a novel answer to this question. We argued and 

showed that the more widely applicable is the technological knowledge developed by an organization, 

the greater are its incentives and opportunities to ally with organizations embedded within the core of 

the R&D network; consequently, the more the organization will tend towards the network core. 

Conversely, the more specialized an organization’s technological knowledge becomes, the more the 

organization will drift towards the network periphery. 

While the arguments developed in this paper are deeply rooted in received network theory, they 

change the way in which we think about network dynamics in one important way. Existing network 

explanations are largely premised on the view that todays’ network position determines tomorrow’s 

(Gulati and Gargiulo 1999), leaving moot why organizations move across network positions (Ahuja et 

al. 2012). Conversely, we drew insights from the knowledge-based view of the firm to argue that an 

organization’s opportunity and interest structures – hence an organization’s conduct – are not only a 

reflection of its current network position but also depend on the evolution of its internal knowledge 

base. While recently inter-organizational scholars have recognized the importance of incorporating 

organization-level theoretical mechanisms in network explanations (Operti and Carnabuci 

forthcoming), this line of theoretical development has yet to gain momentum. The present study 
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contributes to this theoretical direction by articulating a set of causal mechanisms that explicitly relate 

an organization’s knowledge base to its network dynamics. More generally, our results show that it is 

both possible and useful to integrate the rich body of theory on the knowledge-based view of the firm 

into existing network explanations.      

This study also contributes new theory and evidence to the knowledge-based view of the firm. A 

key achievement of this literature has been to explain and show that a wide range of organizational 

outcomes, from the ability to combine previously unrelated technologies, to financial performance, 

are affected by an organization’s knowledge base. What has been less explored in this literature, 

however, is the question of where does a firm’s knowledge base come from and, more specifically, 

why do firms’ knowledge bases develop in such different ways? The results of the present study offer 

novel insights into these questions. Drawing from network theory, we argued that an organization’s 

network position affects both its opportunity structure (i.e., which knowledge it is exposed to and, 

hence, can potentially absorb) and its interest structure (i.e., which knowledge it is willing to 

develop). On these grounds, we hypothesized that an organization’s position along the core-periphery 

structure of the R&D alliance network affects whether the firm will develop a generalist or a specialist 

knowledge base. Complementing the rich body of work on the effects of generalist and specialized 

knowledge on various organizational and strategic outcomes, our analyses extend the knowledge-

based view of the firm by shedding light on the origins and evolution of firms’ knowledge base.       

Of course, this study is not without limitations. In line with our theoretical focus, and inspired by 

recent empirical evidence (Schilling 2009), we analyzed the evolution of a comprehensive R&D 

network comprising organizations from across all technological sectors. While this is a strength of 

this study, it brings with it two significant limitations. First, both the dynamics of R&D alliances and 

firms’ patenting behavior may differ across R&D alliances, potentially leading to unobserved 

heterogeneity. While we tackled this issue by modeling organization-level fixed-effects in all our 

econometric specifications, this solution leaves open the possibility of unobserved heterogeneity 

across pairings of sectors. For example, do the alliance formation mechanisms postulated in this study 

apply equally when, say, a biotech firm allies with a pharmaceutical firm as when a chemical firm 

allies with an electronics firm? While we have no clear theoretical reason to answer negatively, 



29 

 

empirically we are not able to address this question. Second, unlike industry studies, a limitation of 

our macroscopic approach is that it does not allow us to complement and triangulate our quantitative 

analyses with contextual, qualitative and historical information. While we are cognizant of these 

limitations, we are persuaded that the theory and evidence presented in this study deepen our 

understanding of the nature and dynamics of organizations and they lay the ground for further 

advancing organization theory. 

REFERENCES 

Ahuja, G. 2000a. The duality of collaboration: Inducements and opportunities in the 

formation of interfirm linkages. Strategic Management Journal 21(3) 317. 

Ahuja, G. 2000b. Collaboration Networks, Structural Holes, and Innovation: A Longitudinal 

Study. Administrative Science Quarterly 45(3) 425–455. 

Ahuja, G., G. Soda, A. Zaheer. 2012. The Genesis and Dynamics of Organizational 

Networks. Organization Science 23(2) 434–448. 

Aldrich, H. 1976. Environments of Organizations. Annual Review of Sociology 2 79–105. 

Anderson, T. W. 1984. Introduction to multivariate statistical analysis 2nd ed. New York, 

John Wiley and Sons. 

Argyres, N. S., B. S. Silverman. 2004. R&D, organization structure, and the development of 

corporate technological knowledge. Strategic Management Journal 25(89) 929–958. 

Arora, A., A. Fosfuri, A. Gambardella. 2001. Specialized technology suppliers, international 

spillovers and investment: evidence from the chemical industry. Journal of Development 

Economics 65(1) 31–54. 

Arora, A., A. Gambardella. 1990. Complementarity and External Linkages: The Strategies of 

the Large Firms in Biotechnology. The Journal of Industrial Economics 38(4) 361–379. 

Astley, W. G., A. H. Van de Ven. 1983. Central Perspectives and Debates in Organization 

Theory. Administrative Science Quarterly. 

Baum, J. A. C., J. Singh. 1994. Organization-Environment Coevolution. J. A. C. Baum, J. 

Singh, eds. Evolutionary Dynamics of Organizations. New York, Oxford University 

Press, 379–402. 

Borgatti, S. P., M. G. Everett. 1999. Models of core/periphery structures. Social Networks 

21(4). 

Bresnahan, T. F., M. Trajtenberg. 1995. General purpose technologies “Engines of growth”? 

Journal of Econometrics 65(1) 83–108. 



30 

 

Burt, R. S. 1992. Structural holes: the social structure of competition. M. F. Guillen, R. 

Collins, P. England, M. Meyer, eds. Networks and Organizations. Cambridge, Mass., 

Russell Sage Foundation, 202–246. 

Carnabuci, G. 2010. The Ecology of Technological Progress: How Symbiosis and 

Competition Affect the Growth of Technology Domains. Social Forces 88(5) 2163–

2187. 

Cattani, G., S. Ferriani. 2008. A Core/Periphery Perspective on Individual Creative 

Performance: Social Networks and Cinematic Achievements in the Hollywood Film 

Industry. Organization Science 19(6) 824–844. 

Cattani, G., S. Ferriani, G. Negro, F. Perretti. 2008. The Structure of Consensus: Network 

Ties, Legitimation, and Exit Rates of U.S. Feature Film Producer Organizations. 

Administrative Science Quarterly 53(1) 145–182. 

Chatterji, A. K., K. Fabrizio. 2012. How Do Product Users Influence Corporate Invention? 

Organization Science 23(4) 971–987. 

Cohen, W. M., D. A. Levinthal. 1990. Absorptive capacity: A new perspective on learning 

and innovation W. H. Starbuck, P. S. Whalen, eds. Administrative Science Quarterly 

15(1) 128–152. 

Connelly, B. L., J. L. Johnson, L. Tihanyi, A. E. Ellstrand. 2011. More Than Adopters: 

Competing Influences in the Interlocking Directorate. Organization Science 22(3) 688–

703. 

Cragg, J. G., S. G. Donald. 1993. Testing identifiability and specification in instrumental 

variable models. Econometric Theory 9(2) 222–240. 

David, P. A. 1990. The Dynamo and the Computer: An Historical Perspective on the Modern 

Productivity Paradox. American Economic Review 80(2) 355–361. 

Davis, J. P., K. M. Eisenhardt, C. B. Bingham. 2009. Optimal Structure, Market Dynamism, 

and the Strategy of Simple Rules. Administrative Science Quarterly 54(3) 413–452. 

Dyer, J. H., K. Nobeoka. 2000. Creating and managing a high performance knowledge-

sharing network: the Toyota case. Strategic Management Journal 21(3) 345. 

Gambardella, A., M. S. Giarratana. General technological capabilities, product market 

fragmentation, and markets for technology. Research Policy (Forthcoming). 

Gambardella, A., A. M. McGahan. 2010. Business-Model Innovation: General Purpose 

Technologies and their Implications for Industry Structure. Long range planning 43(2-3) 

262–271. 

Garcia-Vega, M. 2006. Does technological diversification promote innovation? Research 

Policy 35(2) 230–246. 



31 

 

Grant, R. M., C. Baden-fuller. 2004. A Knowledge Accessing Theory of Strategic Alliances. 

Journal of Management Studies 41(1) 61–84. 

Gulati, R., M. Gargiulo. 1999. Where do Interorganizational networks come from? American 

Journal of Sociology 104 1439–1493. 

Hall, B. H., A. B. Jaffe, Manuel Trajtenberg. 2001. The NBER Patent Citation Data File: 

Lessons, Insights and Methodological Tools. 

Hayashi, F. 2000. Econometrics. 2000. Princeton University Press. Section 1 60–69. 

Kale, P., H. Singh. 2000. Learning and protection of proprietary assets in strategic alliances: 

Building relational capital. Strategic Management Journal 21(3) 217. 

Khanna, T., R. Gulati, N. Nohria. 1998. The dynamics of learning alliances: Competition, 

cooperation, and relative scope. Strategic Management Journal 19(3) 193. 

Knoke, D., F. U. Pappi, J. Broadbent, Y. Tsujinaka. 1996. Comparing Policy Networks: 

Labor Politics in the U.S., Germany, and Japan. 

Kogut, B. 1988. Joint ventures: Theoretical and empirical perspectives. Strategic 

Management Journal 9(4) 319–332. 

Koza, M. P., A. Y. Lewin. 1999. The Coevolution of Network Alliances: A Longitudinal 

Analysis of an International Professional Service Network. Organization Science 10(5) 

638–653. 

Lavie, D. 2006. The Competitive Advantage of Interconnected Firms: An Extension of the 

Resource-Based View. Academy of Management Review 31(3) 638–658. 

Lawrence, P. R., J. W. Lorsch. 1967. Differentiation and integration in complex 

organizations. Administrative science quarterly 1–47. 

Lomi, A., E. R. Larsen, F. C. Wezel. 2010. Getting There: Exploring the Role of 

Expectations and Preproduction Delays in Processes of Organizational Founding. 

Organization Science 21(1) 132–149. 

Mezias, J. M., S. J. Mezias. 2000. Resource Partitioning, the Founding of Specialist Firms, 

and Innovation: The American Feature Film Industry, 1912-1929. Organization Science 

11(3) 306–322. 

Mintz, B., M. Schwartz. 1981. Interlocking Directorates and Interest Group Formation. 

American Sociological Review 46(6). 

Mitchell, W., K. Singh. 1993. Death of the lethargic: Effects of expansion into new technical 

subfields on performance in a firm’s base business. Organization Science 4(2) 152–180. 

Mitsuhashi, H., H. R. Greve. 2009. A Matching Theory of Alliance Formation and 

Organizational Success: Complementarity and Compatibility. Academy of Management 

Journal 52(5) 975–995. 



32 

 

Moser, P., T. Nicholas. 2004. Was Electricity a General Purpose Technology? Evidence from 

Historical Patent Citations. American Economic Review 94(2) 388–394. 

Mullins, N. C., L. L. Hargens, P. K. Hecht, E. L. Kick. 1977. Group Structure of Co-Citation 

Clusters - Comparative-Study. American Sociological Review 42(4) 552–562. 

Operti, E., G. Carnabuci. Public Knowledge, Private Gain: The Effect of Spillover Networks 

on Firms’ Innovative Performance. Journal of Management (Forthcoming). 

Owen-Smith, J., M. Riccaboni, F. Pammolli, W. W. Powell. 2002. A Comparison of U.S. and 

European University-Industry Relations in the Life Sciences. Management Science 48(1) 

24–43. 

Podolny, J. M., K. P. Page. 1998. Network forms of organization. Annual Review of 

Sociology 24(1) 57–77. 

Powell, W. W., K. W. Koput, L. Smith-Doer. 1996. Interorganizational collaboration and the 

locus of innovation: Networks of learning in biotechnology. Administrative Science 

Quarterly 41(1) 116. 

Rosenberg, N. 1994. Exploring the black box: Technology, economics, and history. 

Cambridge, UK, Cambridge University Press. 

Rosenberg, Nathan, Manuel Trajtenberg. 2004. A General-Purpose Technology at Work: The 

Corliss Steam Engine in the Late-Nineteenth-Century United States. The Journal of 

Economic History 64(1) 61–99. 

Rothaermel, F. T., W. Boeker. 2008. Old technology meets new technology: 

complementarities, similarities, and alliance formation. Strategic Management Journal 

29(1) 47–77. 

Scherer, F. M. 1965. Firm Size, Market Structure, Opportunity, and the Output of Patented 

Inventions. American Economic Review 55(5) 1097–1125. 

Schilling, M. A., C. C. Phelps. 2007. Interfirm Collaboration Networks: The Impact of Large-

Scale Network Structure on Firm Innovation. Management Science 53(7) 1113–1126. 

Schilling, M. A. 2009. Understanding the alliance data. Strategic Management Journal 30(3) 

233–260. 

Schilling, M. A. 2011. Technology Shocks, Technological Collaboration, and Innovation 

Outcomes. Paper presented at the DRUID 2012, CBS, Copenhagen, Denmark. 

Siggelkow, N., J. W. Rivkin. 2005. Speed and Search: Designing Organizations for 

Turbulence and Complexity. Organization Science 16(2) 101–122. 

Snyder, D., E. L. Kick. 1979. Structural Position in the World System and Economic-Growth, 

1955-1970 - Multiple-Network Analysis of Transnational Interactions. American 

Journal of Sociology 84(5) 1096–1126. 



33 

 

Song, M., R. J. Calantone, C. A. di Benedetto. 2002. Competitive forces and strategic choice 

decisions: An experimental investigation in the United States and Japan. Strategic 

Management Journal 23(10) 969–978. 

Stuart, T. E., O. Sorenson. 2007. Strategic networks and entrepreneurial ventures. Strategic 

Entrepreneurship Journal 1(2007) 211–227. 

Sytch, M., A. Tatarynowicz, R. Gulati. 2012. Toward a Theory of Extended Contact: The 

Incentives and Opportunities for Bridging Across Network Communities. Organization 

Science 23(6) 1658–1681. 

T. Bresnahan and A. Gambardella. 1998. The division of inventive labor and the extent of the 

market. E. Helpman, ed. General Purpose Technologies & Economic Growth. 

Toh, P. K. 2007. Structure-Scope Matching: A Study of the Interrelationship between 

Organization Structure and Innovation in the US Communications Industry. University 

of Michigan. 

Trajtenberg, Manuel, R. M. Henderson, A. B. Jaffe. 1997. University versus corporate 

patents: A window on the basicness of invention. Economics of Innovation and New 

Technology 5(1) 19–50. 

Van de Ven, A. H., R. Leung, J. P. Bechara, K. Sun. 2012. Changing Organizational Designs 

and Performance Frontiers. Organization Science 23(4) 1055–1076. 

Volberda, H. W., N. van der Weerdt, E. Verwaal, M. Stienstra, A. J. Verdu. 2012. 

Contingency Fit, Institutional Fit, and Firm Performance: A Metafit Approach to 

Organization-Environment Relationships. Organization Science 23(4) 1040–1054. 

White, H. C., S. A. Boorman, R. L. Breiger. 1976. Social-structure from multiple networks. I: 

Blockmodels of roles and positions. American Journal of Sociology 81(4) 730–780. 

Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. 

Yayavaram, S., G. Ahuja. 2008. Decomposability in Knowledge Structures and Its Impact on 

the Usefulness of Inventions and Knowledge-base Malleability. Administrative Science 

Quarterly 53(2) 333–362. 

Zaheer, A., G. G. Bell. 2005. Benefiting from network position: firm capabilities, structural 

holes, and performance. Strategic Management Journal 26(9) 809–825. 

Zelnio, R. 2011. Identifying the global core-periphery structure of science. Scientometrics 

91(2) 601–615. 

Zhang, J., C. Baden-Fuller, V. Mangematin. 2007. Technological knowledge base, R&D 

organization structure and alliance formation: Evidence from the biopharmaceutical 

industry. Research Policy 36(4) 515–528. 

 



34 

 

FIGURES AND TABLES 

Figure 1. A core-periphery structure. 

 

 

 



Figure 2. The evolution of the R&D alliance network 
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Figure 3. Fit with core-periphery model    Figure 4. Average generality (3 alternative measures) over time 

 

Table1. Means, standard deviations, and pairwise correlations 

  
Mean S.D. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(1) Generality (logit transf.) -2.84 5.01 

          
(2) Coreness (logit transf.) -5.62 3.43 0.09 

         
(3) 1985-1990 (dummy) 0.47 0.50 -0.52 0.00 

        
(4) 1991-1996 (dummy) 0.38 0.49 0.36 -0.01 -0.74 

       
(5) EPS with extra items (ln) 0.74 0.82 0.21 0.05 -0.25 0.06 

      
(6) Number of employees (ln) 2.07 2.03 0.11 0.17 -0.19 0.02 0.59 

     
(7) R&D cost per employee 22.6 28.9 -0.21 -0.01 0.31 -0.16 -0.49 -0.47 

    
(8) Effective size 32.6 48.0 0.01 0.50 0.14 -0.03 0.06 0.31 0.03 

   
(9) IT 94-96 shock (dummy) 0.01 0.10 0.06 0.06 -0.09 0.13 0.03 0.01 -0.01 0.03 

  
(10) California Earthquake 0.03 0.17 0.09 0.01 -0.17 0.23 -0.04 -0.12 0.06 0.00 -0.02 

 
(11) State Property Net Subsidies 24.2 4.37 0.16 -0.05 -0.08 -0.05 0.08 0.06 -0.06 -0.04 -0.02 0.10 
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Table 2. OLS, 2SLS, and 3SLS regressions predicting Generality and Coreness with contemporaneous or lagged effects  

 

 

  

 

 

 

 

 

 

Model 1a Model1b Model 2a Model 2b Model 3a Model 3b Model 4a Model 4b Model 5a Model 5b Model 6a Model 6b

Generality (t) Coreness (t) Generality (t+1) Coreness (t+1) Generality (t) Coreness (t) Generalty (t+1) Coreness (t+1) Generality (Δt) Coreness (Δt) Generality (t) Coreness (t)

Constant 1.733*** -6.011*** 0.993** -5.898*** 34.605*** -6.657*** 24.318*** -6.423*** 0.760*** -2.090** 2.000 -1.523**

(0.391) (0.159) (0.433) (0.208) (6.781) (0.782) (4.677) (0.587) (0.129) (0.839) (1.421) (0.748)

Coreness 0.241*** 0.229*** 5.723*** 4.190*** 2.990*** 1.732***

(0.0340) (0.035) (1.119) (0.779) (0.892) (0.063)

Generality 0.054*** 0.035*** 2.279*** 1.273*** 2.133*** 0.522***

(0.008) (0.009) (0.595) (0.329) (0.808) (0.020)

EPS with extra items (ln) 0.985*** -0.074 0.634*** -0.103* 1.101*** -2.254*** 0.612** -1.342*** 0.408*** -0.804** 1.016*** -0.533***

(0.113) (0.054) (0.112) (0.061) (0.317) (0.638) (0.260) (0.369) (0.141) (0.363) (0.105) (0.059)

Number of employees (ln) -0.701*** 0.231*** -0.210* 0.185*** -1.772*** 1.686*** -1.182*** 0.857*** -1.103*** 1.986** -0.993*** 0.537***

(0.105) (0.050) (0.108) (0.059) (0.365) (0.457) (0.316) (0.241) (0.218) (0.788) (0.098) (0.054)

R&D cost per employee -0.031*** 0.005* -0.033*** 0.002 -0.048*** 0.073*** -0.029** 0.064*** -0.006 0.002 -0.036*** 0.019***

(0.005) (0.002) (0.006) (0.003) (0.015) (0.022) (0.014) (0.019) (0.008) (0.012) (0.005) (0.003)

1985-1990 (dummy) -3.867*** -0.020 -2.004*** 0.257** -2.586*** 8.705*** -0.983* 4.737*** 0.852 -1.924* -3.518*** 1.815***

(0.217) (0.107) (0.220) (0.123) (0.662) (2.388) (0.551) (1.234) (0.603) (1.142) (0.204) (0.135)

1991-1996 (dummy) 0.076 0.084 0.273 0.387*** -0.415 -0.133 -0.311 0.0956 1.276** -1.803* -0.057 0.038

(0.199) (0.095) (0.204) (0.111) (0.567) (0.459) (0.490) (0.314) (0.501) (0.928) (0.186) (0.099)

Firm fixed effects included included included included included included included included included included included included

Observations 4,767 4,767 3,574 3,576 4,767 4,767 3,574 3,576 3,513 3,513 4,767 4,767

Number of firms 976 976 726 731 976 976 726 731 708 708 976 976

R-squared 0.247 0.022 0.159 0.016

Sargan overid. test 0.536 0.715 0.140 0.210 0.238 0.208

Endog. test 0.000 0.000 0.000 0.000 0.000 0.000

Anderson underid. test 0.000 0.001 0.000 0.000 0.000 0.029

Weak id. test (Wald F stat.) 13.816 7.305 15.965 8.194 9.657 3.548

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are reported in parentheses. Reference category for period dummies is 1997-2002. In all models, both Generality and Coreness are logit transforms. 

Coreness is instrumented in Models 2a, 3a, 4a, 5a, 6a. Generality is instrumented in Models 2b, 3b, 4b, 5b, 6b. In models 5a and 5b, all RHS and LHS variables are first-differenced. 

OLS, FE, no lag OLS, FE, 1 yr lag 2SLS, FE, no lag 2SLS, FE, 1 yr lag 2SLS, FD, no lag 3SLS, FE, no lag 
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Table 3. Alternative model specifications and robustness analyses  

 


